Exercise	Topic	Strand	Learning Objectives	Page
1	Applications of percentages (1)	Number	- Solve problems involving finding percentages	4
2	Applications of percentages (2)		- Solve problems involving finding values from the given percentages	6
3	Angles	Measures	- Recognise degree (${ }^{\circ}$) - Measure and compare the sizes of angles in degree	8
4	Drawing angles		- Draw angles of given sizes	10
5	Circumferences (1)	Measures	- Recognise π - Recognise and use the formula for circumference - Solve problems involving circumference	12
6	Circumferences (2)		- By the advanced use of the formula for circumference, find the perimeters of 2-D shapes formed by circles and semicircles - Solve harder problems involving circumference	14
7	Time	Measures	- Perform the interconversion between units of time - Solve problems involving time intervals	16
8	Speed (1)		- Recognise the concept of speed Compare the speed of objects intuitively and directly Compare the speed of objects in improvised units - Recognise metres per second (m/s) and kilometres per hour (km/h)	18
9	Speed (2)		- Solve problems involving finding distance from the given speed and time - Solve problems involving finding time from the given speed and distance	20
10	Travel graphs		- Read travel graphs	22
	Assessment 1		- Cover the content of exercises 1 - 10	24
11	Simple equations (1)	Algebra	- Solve simple equations involving whole numbers, fractions, decimals or percentages	28
12	Simple equations (2)		- Write the expressions and equations involving like terms - Solve simple equations involving like terms	30
13	Problems involving simple equations		- Solve problems by using simple equations - Solve problems on finding the lengths of sides or diameter of a 2-D shape from its perimeter or area by using simple equations - Solve problems on finding the original values from the given percentages or fractions by using simple equations	32

Exercise	Topic	Strand	Learning Objectives	Page
14	Areas of circles (1)	Measures	- Recognise the formula for areas of circles - By using the formula for areas of circles, find the areas of circles - Solve problems involving finding the areas of circles	34
15	Areas of circles (2)		- By the advanced use of the formula for areas of circles, find the areas of 2-D shapes formed by circles and semicircles - Solve harder problems involving finding the areas of circles	36
16	Pie charts (1)	Data Handling	- Recognise pie charts - Read pie charts (involving the angle at the centre of each sector)	38
17	Pie charts (2)		- Read pie charts (involving the percentage of each sector)	40
18	Uses and abuses of statistics		- Present the data with appropriate statistical charts - Discuss and recognise the uses and abuses of statistical charts in daily life	42
19	Non-metric units (Enrichment)		- Recognise the non-metric units in daily life Perform the interconversion between nonmetric units and metric units	44
Assessment 2			Cover the content of exercises 11-18	46
Final Assessment			- Cover the content of exercises 1-18	50

Additional Resources:

- Cross-topic Exercise
- Challenging Problems ('Inquiry and Investigation' in the latest curriculum)
- Revision Notes
- Answer Booklet (Including Solution Guide, Common Mistakes Explanation, MCQ Explanation)

9 Speed (2)

1 1-minute Revision

Concept Review

Formulae of speed

- (Find speed)
- (Find distance)
- (Find time)

Speed $=$ Distance \div Time
Distance $=$ Speed \times Time
Time $=$ Distance \div Speed

27 Basic Practice

According to the data given in the table, complete the table below.
1.
2.
3.
4.

Distance	Time	Speed
360 m	second(s)	$8 \mathrm{~m} / \mathrm{s}$
9 km	hour(s)	$1.5 \mathrm{~km} / \mathrm{h}$
	m	240 seconds
	km	40 minutes
15 km		$0 \frac{3}{4} \mathrm{~m} / \mathrm{s}$
		$0.6 \mathrm{~km} / \mathrm{h}$

Complete the following.

6. A tram takes \qquad hour(s) to travel 20 km at an average speed of $15 \mathrm{~km} / \mathrm{h}$.
7. Uncle Joe runs at an average speed of $3 \mathrm{~m} / \mathrm{s}$. After 30 minutes, he runs \qquad m.
8. A lorry departs from a warehouse at an average speed of $72 \mathrm{~km} / \mathrm{h}$. After travelling 1 hour and 10 minutes, it reaches an exhibition hall. The warehouse and the exhibition hall are
\qquad km apart.
9. Iris cycles at an average speed of $9 \mathrm{~m} / \mathrm{s}$. She takes \qquad minute(s) to cycle 5.4 km .
10. Candy leaves home at $07: 30$. She walks to school at an average speed of $0.8 \mathrm{~m} / \mathrm{s}$. She reaches the school at 07:45. The school and Candy's home are \qquad m apart.
11. Rocky goes hiking at an average speed of $3.6 \mathrm{~km} / \mathrm{h}$. The whole journey is 8.1 km . He starts hiking at 9:15 a.m. He finishes hiking at \qquad $:$ \qquad (a.m. / p.m.)
12. Jack takes 16 minutes to walk quickly from his home to a library at an average speed of $1.5 \mathrm{~m} / \mathrm{s}$. After returning books, he takes 30 minutes to return home. The average speed that

Useful Tips

What is the distance between Jack's home and the library? Jack walks back home is \qquad m / s.
13. Dad takes 45 minutes to drive from home to the airport at an average speed of $60 \mathrm{~km} / \mathrm{h}$. He drives at an average speed of $75 \mathrm{~km} / \mathrm{h}$ when returning home. He takes \qquad hour(s) to return home.
Date \square

Time used
minutes

Marks

3 Advanced Practice

Solve the problems. (Show your working)
14. City A and City B are 150 km apart. A lorry travels at an average speed of $60 \mathrm{~km} / \mathrm{h}$ from City A to City B. After $1 \frac{1}{5}$ hour, how far is the lorry away from City B?
\square
15. The distance from the foot to the peak of a hill is 11 km . Lily walks 5 km to the hillside at an average speed of $2.5 \mathrm{~km} / \mathrm{h}$. Then, she walks at an average speed of $2.4 \mathrm{~km} / \mathrm{h}$ to the peak of the hill. How many hours does Lily take to walk from the foot to the peak of the hill?

Blacken the next to the correct answer.

16. Mum and Ronald are 50 m apart. They walk towards each other and meet in 20 seconds. If the average

Useful Tips
How many seconds does Ronald walk? How many metres does he walk? walking speed of Mum is $1.5 \mathrm{~m} / \mathrm{s}$, what is the average How many metres does he walk? speed of Ronald?
A. $2.5 \mathrm{~m} / \mathrm{s}$B. $1.5 \mathrm{~m} / \mathrm{s}$
C. $1.25 \mathrm{~m} / \mathrm{s}$
D. $1 \mathrm{~m} / \mathrm{s}$
17. Jenny runs 800 m in a stadium. Then, she runs 400 m from the stadium to a park. She reaches the park at 10:00 a.m. If she runs at an average speed of $2.5 \mathrm{~m} / \mathrm{s}$ for the whole journey, when does she start running?
A. 9:52 a.m.B. 9:50 atm.
C. 9:10 a.m.
D. 9:08 a.m.
18. Ivan and Joyce begin their journey at the same time and the same place and walk in opposite directions. Ivan walks 3 km each hour. After 2 hours, they are 14 km apart. What is the distance that Joyce walks each hour on average?A. 4 kmB. 7 kmC. 8 km
D. 10 km

Name: \qquad Class: \qquad () Date: \qquad

	Assessment Points	Questions	Marks
Applications of percentages	Solve problems involving finding percentages or finding values from the given percentages	1-7	/ 16
Angles	Measure and compare the sizes of angles in degree, draw angles of given sizes	8-13	/ 12
Circumferences	Find circumferences, diameters, radii and perimeters of 2-D shapes	$\begin{aligned} & \text { 14a, 15a, 16, 17a, } \\ & 18 \mathrm{a}, 20 \mathrm{~b}, 21 \mathrm{a} \end{aligned}$	/ 14
Speed	Find time intervals, speeds, times and distances	20c, 21b, 22-29	120
Simple equations	Solve equations, solve problems by using equations	30-35	/ 16
Areas of circles	Find areas of circles and areas of 2-D shapes involving circles	$\begin{aligned} & \text { 14b, 15b, 17b, } \\ & \text { 18b-20a } \end{aligned}$	/ 11
Pie charts and uses and abuses of statistics	Read pie charts, choose the appropriate statistical charts	36-38	/ 11
		Total marks:	/ 100

Instructions - Multiple choice questions: Blacken the \bigcirc next to the correct answer.

- Questions in which you are asked to 'show your working':

Write your mathematical expressions, answers, and statements / conclusions.

- Other types of questions: Answer as required in the spaces provided.

1. There are 80 pork buns and 50 custard buns in a steam oven.
a. The number of pork buns is \qquad \% that of custard buns.
b. The number of custard buns is \qquad \% that of pork buns.
2. There are 18 male and 22 female customers in a fast food shop. What percentage of the customers are female?

3. There are 20 chocolates in a box. Peter eats 4 chocolates, which is 2 fewer than Jack.
a. Jack eats \qquad \% of the box of chocolates.
b. The number of chocolates that Jack eats is \qquad \% that of Peter.
4. There are 75 cans of coke and 125 cans of juice in a convenience store.
a. 40% of the coke are cola. There are \qquad cans of cola.
b. Among the juice, 12% are orange juice, 20% are apple juice. There are
\qquad cans of orange juice and apple juice in the convenience store altogether.

Cross-topic Exercise

Complete the following.

1. A carton of milk is 1 L . After drinking 250 mL , the remaining milk is \qquad \% of the carton of milk.
2. Measure the angle on the right.

Angle a is \qquad \% of a straight angle.

3. Tom draws a right-angled triangle in a circle. The radius of the circle is 10 cm .
a. The circumference is \qquad cm. (Take $\pi=3.14$)
b. The area of the triangle is \qquad cm^{2}.

4. Fanny puts a circular ring on a piece of square paper.
a. The perimeter of the square paper is \qquad cm .
b. The length of the ring is about \qquad times the side of the square paper. (Give the answer as a whole number.)

5. The diameter of a circular lawn is 7.7 m . Mabel walks around the edge of the lawn at an average speed of $1.1 \mathrm{~m} / \mathrm{s}$ for one lap.

Useful Tips
How far does Mabel walk?

She walks for \qquad second(s). (Take $\pi=\frac{22}{7}$)
6. In the figure, ' \bullet ' represents the centre of each circle.

The area of the figure on the right is \qquad m^{2}. (Take $\pi=\frac{22}{7}$)

Solve the problems. (Show your working)

7. Location A and location B are 100 km apart. A minibus travels from location A to location B at an average speed of $75 \mathrm{~km} / \mathrm{h}$. A bus travels from location B to location A at an average speed of $50 \mathrm{~km} / \mathrm{h}$. If two cars depart at the same time, after how many hour(s) will they meet? (Use an equation to solve the problem.)

Unit 1: Applications of percentages (Exercises 1-2)

1. Finding percentages

There are 20 marbles in a bottle. 12 of them are yellow, 5 of them are blue and the remaining are green.

- $\frac{12}{20} \times 100 \%$
$=60 \%$
60% of the marbles are yellow marbles.
- $60 \%+15 \%$
= 75%
75% of the marbles are yellow marbles and green marbles.

$$
\begin{aligned}
& \text { - } \frac{20-12-5}{20} \times 100 \% \\
& =15 \% \\
& 15 \% \text { of the marbles are } \\
& \text { green marbles. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \quad 60 \%-15 \% \\
& =45 \%
\end{aligned}
$$

The percentage of the yellow marbles is 45% more than that of green marbles.

- $\frac{12}{5} \times 100 \%$ The number of blue
$=240 \%$ marbles is the standard of comparison. So, it is the denominator.
The number of yellow marbles is 240% that of blue marbles.
- $100 \%-60 \%-15 \%$

$$
=25 \%
$$

25% of the marbles are blue marbles.

The number of origami star is 5% nore than that of origami crane. The number of origami crane is 3% fewer than that of origami turtle.

- $100 \%+5 \%$
$=105 \%$
The number of origami star is 105% that of origami crane.

> - $100 \%-3 \%$
> $=97 \%$

The number of origami crane is 97% that of origami turtle.

- $100 \%+10 \%$

$$
=110 \%
$$

After folding 10% more origami crane, the number of origami crane is 110% the original number.

2. Finding values from the given percentages

There are 20 cartons of drinks at home. 40% are soya milk, 15% are green tea and the remainder are lemon tea.

- $20 \times 40 \%$
$=8$
- $20 \times(40 \%+15 \%)$
$=11$
- $20 \times(40 \%-15 \%)$
- $20 \times(100 \%-40 \%-15 \%)$
$=5$

$$
=9
$$

There are 8 cartons of soya soya milk and green
milk. tea altogether.

There are 9 cartons of between the numbers lemon tea.
of cartons of soya
milk and green tea
is 5 .
5. $12 \quad[15 \div 75 \times 60=12]$

Common mistake: $\frac{1}{5} \times$

- Neglect that the unit of the answer is minutes. To get the correct answer, we should $\times 60$ to convert hours to minutes.

6. $1 \frac{1}{3}\left[20 \div 15=1 \frac{1}{3}\right]$
7. 5400
[$3 \times 30 \times 60=5400$
$(30$ minutes $=(30 \times 60)$ seconds $=1800$ seconds $)]$
8. 84

$$
[72 \times(1+10 \div 60)=84
$$

$\left(1\right.$ hour and 10 minutes $=(1+10 \div 60)$ hours $=1 \frac{1}{6}$ hours $)$]
9. 10
[$5.4 \times 1000 \div 9 \div 60=10$
$(5.4 \mathrm{~km}=(5.4 \times 1000) \mathrm{m}=5400 \mathrm{~m})]$

Common mistake 1: $0.6 \times$

- Neglect that the unit of distance is km and neglect that the unit of the answer is minutes. Therefore, wrongly write the expression as $5.4 \div 9$.
Common mistake 2: $600 \times$
- Neglect that the unit of the answer is minutes. Therefore, we should $\div 60$ to convert seconds to minutes.

10. 720
[The time taken to walk from Candy's home to the school is 15 minutes.

$$
0.8 \times 15 \times 60=720
$$

$(15$ minutes $=(15 \times 60)$ seconds $=900$ seconds $)]$
11. 11:30 a.m.
[$8.1 \div 3.6=2 \frac{1}{4}$ hours $2 \frac{1}{4}$ hours $=2$ hours and $\left(\frac{1}{4} \times 60\right)$ minutes
$=2$ hours and 15 minutes
i.e.: Hour: $(9+2)$; Minute: $(15+15)$]
12. $0.8[1.5 \times 16 \times 60 \div(30 \times 60)=0.8]$
13. $\frac{3}{5}$ or $0.6 \quad\left[60 \times(45 \div 60) \div 75=\frac{3}{5}\right.$ or 0.6$]$
14. $150-60 \times 1 \frac{1}{5}$
$=78$
The lorry is 78 km away from City B .
15. $5 \div 2.5+(11-5) \div 2.4$ $=4.5$
Lily takes 4.5 hours to walk from the foot to the peak of the hill.
16. D [Ronald walks: $50-1.5 \times 20=20 \mathrm{~m}$

Average speed of Ronald: $20 \div 20=1 \mathrm{~m} / \mathrm{s}$]
Mum
Ronald

MCQ Explanation

Wrong choice	Reason
A	Mistakenly regard 50 m as the distance walked by Ronald. Therefore, wrongly write the expression as $50 \div 20=2.5$.
B	Mistakenly regard the distance find from Mum's speed is the distance walked by Ronald. Therefore, wrongly write the expression as $(1.5 \times 20) \div 20=1.5$.
C	Mistakenly regard 50 m as the distance in the expression and the time for them to walk as 20×2. Therefore, wrongly write the expression as $50 \div(20 \times 2)=1.25$.

17. A
[Jenny runs: $(800+400) \div 2.5=480$ seconds $=8$ minutes
Starting time $=$ Ending time - Time spent]

MCQ Explanation

Wrong choice	Reason
B	Mix up the formulae of speed and wrongly write the expression as $(800+400) \times 2.5=$ 3000 seconds 500 minutes. Then, mistakenly subtract 1 from the hour part of the ending time and regard the minute part as 50.
C	Mix up the formulae of speed and wrongly write the expression as $(800+400) \times 2.5=$ 3000 seconds $=50$ minutes.
D	Mistakenly subtract 1 from the hour part of the ending time and add 8 to the minute part.

18. A
[Joyce walks: $14-3 \times 2=8 \mathrm{~km}$
The distance that Joyce walks each hour on average: $8 \div 2=4 \mathrm{~km}$]

Ivan
Joyce

© United Prime Educational Publishing (HK) Limited 2023

MCQ Explanation

Wrong choice	Reason
B	Mistakenly regard 14 km as the distance walked by Joyce. Therefore, wrongly write the expression as $14 \div 2=7$.
C	Mistakenly find the distance walked by Joyce. Therefore, wrongly write the expression as $14-(3 \times 2)=8$.
D	Mistakenly regard 14 km as the distance walked by Joyce. Also, wrongly regard the distance in the expression as 'distance walked by Joyce' + 'distance walked by Ivan'. Therefore, wrongly write the expression as $(14+3 \times 2) \div 2=10$.

10 Travel graphs

1. 1200,2400
2. $17: 45,1$ hour and 45 minutes
3. $\frac{8}{21}$
[1 hour and 45 minutes $=(1 \times 60+45) \times 60$ seconds $=6300$ seconds
Average speed of May: $1200 \times 2 \div 6300=\frac{8}{21} \mathrm{~m} / \mathrm{s}$]
4. $16: 45,30$
5. 30,12
[Each small unit on the vertical axis stands for 1 km .]
6. 8
[Distance: 12 km , time: $1 \frac{1}{2}$ hours
Average speed: $12 \div 1 \frac{1}{2}=8 \mathrm{~km} / \mathrm{h}$]
7. $12: 30$
8. 24 , earlier
[Each small unit on the horizontal axis stands for:
$30 \div 5=6$ minutes]
9. departed from, 11:50 a.m., beach, 1:00 p.m.
10. $12: 22$ p.m., 19
[Time:
On the horizontal axis, each large unit stands for 10 minutes, each small unit stands for 2 minutes.
Distance:
On the vertical axis, each large unit stands for 5 km , each small unit stands for 1 km .
Distance away from the estate: 11 km , distance away from the beach: $30-11=19 \mathrm{~km}$]
11. 36
[Distance: 30 km , time: $\frac{50}{60}$ hour
Average speed: $30 \div \frac{50}{60}=36 \mathrm{~km} / \mathrm{h} \mathrm{]}$
12. 8,5
13. 3
14. higher, 2
[Distance: 12 km , time: 6 hours
Average speed: $12 \div 6=2 \mathrm{~km} / \mathrm{h}$]
15. $14: 00$ to $16: 00$
[The line during this period is the steepest.]
16. $12: 05 \mathrm{p} . \mathrm{m}$.
[He took 140 minutes to reach the peak.
140 minutes $=2$ hours and 20 minutes
Hour: $9+2+\mathbf{1}=12$; Minute: $45+20=\mathbf{6 0}=5$]
Common mistake: 12:05 a.m. \mathbf{x}

- Neglect that after 12:00 noon, the time change
from a.m. to p.m.

17. $34 \frac{2}{7}$ [Distance: 80 km , time: $2 \frac{20}{60}$ hours Average speed: $80 \div 2 \frac{20}{60}=34 \frac{2}{7} \mathrm{~km} / \mathrm{h}$]
18. $50 \quad[80-30=50]$
19. $1: 41 \mathrm{p} . \mathrm{m}$.
[Distance: 80 km , average speed: $50 \mathrm{~km} / \mathrm{h}$
Time: $80 \div 50=1 \frac{3}{5}$ hours
$1 \frac{3}{5}$ hours $=1$ hour $\left(\frac{3}{5} \times 60\right)$ minutes $=1$ hour 36 minutes
After reaching the peak at 12:05 p.m., he reached his home at:
Hour: $12+1=13$ (i.e. 1 p.m.);
Minute: $5+36=41$]

Assessment 1

1. a. $125 \% \quad\left[\frac{20}{16} \times 100 \%\right]$
b. $72 \% \quad\left[\frac{20+16}{50} \times 100 \%\right]$
2. $\frac{250-135}{250} \times 100 \%$
$=46 \%$
46% of the stamps are unused stamps.
