Exercise	Topic	Strand	Learning objectives	Page
1	Large numbers	Number	- Understand the concept of large numbers - Compare large numbers	4
2	Approximations		- Find the approximate values of large numbers by rounding off the numbers - Estimate the number of a large quantity of objects	6
3	Comparing fractions	Number	- Compare fractions with different denominators (no more than 3 fractions)	8
4	Addition of fractions with different denominators		- Perform addition of fractions with different denominators (with no more than 3 fractions) - Solve the problems involving addition of fractions with different denominators	10
5	Subtraction of fractions with different denominators		- Perform subtraction of fractions with different denominators (with no more than 3 fractions) - Solve the problems involving subtraction of fractions with different denominators	12
6	Addition and subtraction of fractions with different denominators		- Perform addition and subtraction of fractions with the different denominators (with no more than 3 fractions) - Solve the problems involving addition and subtraction of fractions with different denominators	14
7	Areas of parallelograms	Measures	Recognise the base and height of a parallelogram - Understand and apply the formula for finding the areas of parallelograms	16
8	Areas of triangles		- Recognise the base and height of a triangle - Understand and apply the formula for finding the areas of triangles	18
9	Areas of trapeziums		- Recognise the base and height of a trapezium - Understand and apply the formula for finding the areas of trapeziums	20
10	Areas of polygons		- Find the areas of polygons	22
	Assessment 1		- Cover the content of exercises 1 - 10	24
11	Multiplication of fractions (1)	Number	- Perform multiplication of two fractions including a proper fraction multiplied by a whole number and involving a mixed number - Solve the problems involving multiplication of fractions	28
12	Multiplication of fractions (2)		- Perform multiplication of two fractions including a proper fraction multiplied by a proper fraction, and a whole number multiplied by a mixed number - Solve the problems involving multiplication of fractions	30

Exercise	Topic	Strand	Learning objectives	Page
13	Multiplication of fractions (3)	Number	- Perform multiplication of three fractions - Solve the problems involving multiplication of fractions	32
14	Algebraic symbols (1)	Algebra	- Use letters to represent numbers - Use algebraic expressions to represent the calculation of only one unknown and the relationships between quantities	34
15	Algebraic symbols (2)		- Use algebraic expressions to represent the text narrations and the relationships involving the calculation of unknowns and the relationships between quantities	36
16	Compound bar charts (1)	Data Handling	- Understand compound bar charts - Read compound bar charts	38
17	Compound bar charts (2)		- Construct compound bar charts	40
18	Chinese numerals and Roman numerals (Enrichment)		- Recognise Modern Chinese numerals - Recognise Classical Chinese numerals and Roman numerals	42
Assessment 2			Cover the content of exercises 11-17	44
Final Assessment			- Cover the content of exercises 1 - 17	48

Additional Resources:

- Cross-topic Exercise 56
- Challenging Problems ('Inquiry and Investigation’ in the latest curriculum) 58
- Revision Notes 60
- Answer Booklet (Including Solution Guide, Common Mistakes Explanation, MCQ Explanation)

- Corresponding base and height of a triangle: Each base has a corresponding height.

- Formula for finding the areas of triangles

$=$ Base \times Height $\div \mathbf{2}$

2 Basic Practice

In each of the triangles below, use the brown line as the base and draw the corresponding height with ${ }_{\square}$.
1.

2.

3.

Find the area of each of the triangles below. Write the answer with a unit.

5.

Fill in the blanks.

7. Kelly spent $\$ 32400$ covering the floor in the triangular room, as shown on the right with tiles. It cost $\$$ \qquad per square metre to cover the floor with tiles.

8. The height of a triangular flag is 30 cm . Its base is 4 times the height. The area of the flag is \qquad cm^{2}.

Date \quad Time used minutes Marks

3 Advanced Practice

Blacken the next to the correct answer.

9. According to the figure on the right, which of the following is correct?A. The area of Z is 3 times that of X.B. The area of X is 2 times that of Y.C. The total area of X, Y and Z is $6 \mathrm{~cm}^{2}$.
D. The total area of X and Y is larger than that of Z.
10. The figure on the right is made up of 3 identical rectangles. What is the area of the coloured part?A. $16 \mathrm{~cm}^{2}$B. $24 \mathrm{~cm}^{2}$C. $32 \mathrm{~cm}^{2}$D. $48 \mathrm{~cm}^{2}$

Complete the following questions.

11. Compare the triangles below. Arrange them from the smallest to the largest.

Write the letters in the blanks.

12. The perimeter of a leisure pool that is in the shape of an isosceles triangle is 54 m . Two of its sides are 15 m each. The corresponding height of the remaining side is 9 m . The area of the leisure pool is

\qquad m^{2}.
13. The figure on the right is made up of 2 squares and 1 triangle. The area of the triangle is \qquad m^{2}.

14. Cut the largest triangle from the rectangular handicraft paper on the right. The area of the triangle is \qquad cm^{2}.

15. The rectangle on the right is made up of 4 squares of the same size. The perimeter of each square is 20 cm . The area of the
 coloured part is \qquad cm^{2}.

Name:	Class:)	Date:
	Assessment points	Questions	Marks
Multiplication of fractions	A fraction multiplied by a whole number, a fraction multiplied by a fraction and multiplication of 3 fractions	1-9	140
Algebra	Algebraic symbols and algebraic expressions	10-16	130
Compound bar charts	Read and construct compound bar charts	17-18	130
		Total marks:	1100

Instructions - Multiple choice questions: Blacken the \bigcirc next to the correct answer.

- Questions in which you are asked to 'show your working':

Write your mathematical expressions, answers, and statements / conclusions.

- Other types of questions: Answer as required in the spaces provided.

1. a. $8 \times 4 \frac{1}{6}=$ \qquad
c. $\frac{17}{18} \times 6 \times \frac{9}{34}=$ \qquad d. $3 \frac{4}{15} \times \frac{5}{7} \times 9=$ \qquad
b. $2 \frac{2}{5} \times 2 \frac{1}{12}=$

\qquad

2. Bill has $\$$ \qquad of pocket money in a normal year altogether.

Southeast Asia. Of the Southeast Asia tour groups, $\frac{1}{4}$ of them went to Japan.
There were \qquad tour groups going to Japan.
4. Rectangle A and Square B are shown on the right.
a. The perimeter of square B is \qquad cm.
b. The length of the rectangle is 2 times its width. The length of the rectangle is \qquad cm .
\qquad cm^{2}.
c. The area of the rectangle is

Cross-topic Exercise

Complete the questions below.

1. The figure below shows a triangular stage.

a. The area of the stage is \qquad . (Write the answer with a unit.)
b. There are auditoriums on each side of the stage. Each side is divided into 6 zones. How many seats are there in the venue?

Number of seats on each side of the stage: \qquad \times \qquad \times \qquad $=$ \qquad
Number of seats in the venue: \qquad \times \qquad $=$ \qquad
2. The bar chart below shows the income and expenses of 4 concerts.

$$
\text { Income and expenses of } 4 \text { concerts }
$$

a. The \qquad concert has the largest difference between the income and expenses.
b. What fraction of the total expenses of the four concerts is the 1st concert?

Answer: \qquad
c. After deducting the expenses, $\frac{1}{4}$ of the total income was donated to a charity.
\qquad thousand dollars were donated to the charity.
d. The costumes used in the concerts were sponsored by a clothing company, with a total sponsorship of $\$ B$. If the clothing company cancels the sponsorship, the concerts' expenses will be \$ \qquad . (Write the algebraic expression.)

Unit 1: Large numbers (Exercises 1-2)

1. Large numbers

- The number shown on the abacus is 304607001.
- It is a 9-digit number.
- 304607001 is written in words as 'three hundred and four million, six hundred and seven thousand and one'.

2. Approximations

- Actual value is the value of the actual quantity.

Approximate value is the value that is to the nearest value of the actual quantity.

- When finding an approximate value of a number, first consider which place of a large number is to be rounded off. Then find the approximate value by rounding off.

3. Estimate the number of a large quantity of objects

- Divide the shuttlecocks on the left into 12 equal parts.
There are 15 shuttlecocks in one of them.
$15 \times 12=180$
There are about 180 shuttlecocks on the left.

Unit 2: Addition and subtraction of fractions (Exercises 3-6)

1. Comparing fractions with different denominators

- When comparing fractions with different numerators and denominators, first expand the fractions to change them to have the same denominator and then compare them.
e.g.: Compare $\frac{1}{3}$ and $\frac{2}{5}$.
$\frac{1}{3}=\frac{1 \times 5}{3 \times 5}=\frac{5}{15}$
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$
The L.C.M. of 3 and 5 is 15.
$\because \frac{5}{15}<\frac{6}{15} \quad \therefore \frac{1}{3}<\frac{2}{5}$
- For mixed numbers, compare the whole number parts first and then the fraction parts.
e.g.: Compare $2 \frac{1}{6}, 3$ and $2 \frac{3}{4}$.

Compare the whole number parts: $3>2 \therefore$ Of the three numbers, 3 is the largest.
17. 140 m

$$
[(952 \div 28+36) \times 2]
$$

8 Areas of triangles

1.

(Accept any reasonable answers)
2.

(Accept any reasonable answers)
3.

(Accept any reasonable answers)
4. $25 \mathrm{~m}^{2}$

$$
[5 \times 10 \div 2]
$$

5. $48 \mathrm{~m}^{2}$
[$8 \times 12 \div 2$]

6. $26 \mathrm{~cm}^{2}$
[$13 \times 4 \div 2$]
7. 324
[$32400 \div(10 \times 20 \div 2)$]
8. 1800
[$(30 \times 4) \times 30 \div 2$]
9. A
[Area of X: $1 \times$ Height $\div 2$;
Area of Y: $2 \times$ Height $\div 2$;
Area of $\mathrm{Z}: 3 \times$ Height $\div 2$
Thus, the area of Y is 2 times that of X and the area of Z is 3 times that of X .]

MCQ Explanation

Wrong choice	Reason
B	Misunderstand the text narration and swap X and Y.
C	Mistakenly think the total length of the base equals the total area and ignore the height that is an unknown.

D	Judge the size of the figure by observation. The sides of triangle Z are steeper, so mistakenly think its area is smaller.

10. B
[$8 \times 4 \div 2+4 \times 4 \div 2$]
MCQ Explanation

Wrong choice	Reason
A	Forget to calculate the area of the smaller triangle.
C	Mistakenly think that the area of the coloured part is exactly the same as the area of the rectangle.
D	When calculating the area of the triangle, mistakenly think the formula for finding the area of a triangle is 'Base \times Height'.

11. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
[Area of A: $2 \times 4 \div 2=4$
Area of B: $6 \times 2 \div 2=6$
Area of C: $4 \times 5 \div 2=10$]
12. 108
$[(54-15-15) \times 9 \div 2]$
13. 8
[The length of the side of the large square is 8 m . The length of the side of the small square is 4 m . Area of the triangle $=(8-4) \times 4 \div 2$]
14. 45
[$15 \times 6 \div 2$]
15. 50
[The length of the side of the square is $20 \div 4=5 \mathrm{~cm}$.
Area of the coloured part $=(5 \times 4) \times 5 \div 2$]

9 Areas of trapeziums

1.

(Accept any reasonable answers)
2.

(Accept any reasonable answers)
3.

(Accept any reasonable answers)
4. $115 \mathrm{~m}^{2} \quad[(6+17) \times 10 \div 2]$
5. $42 \mathrm{~m}^{2} \quad[(4+8) \times 7 \div 2]$
6. $16 \mathrm{~cm}^{2} \quad[(3+5) \times 4 \div 2]$
7. 75
[Upper base and lower base $=47-8-9$

$$
\text { Area }=(47-8-9) \times 5 \div 2]
$$

8. 126

$$
[(7+7 \times 3) \times 9 \div 2]
$$

9. B
[The length of the side of the square is 3 cm . The length of the side of the rectangle is 4 cm . Its width is 3 cm . The area of the trapezium is $(3+4) \times 4 \div 2$]

MCQ Explanation

Wrong choice	Reason
A	Mistakenly think the formula for finding the area of a trapezium is 'Base \times Height \div 2'
C	When calculating the area of the trapezium, forget ' $\div 2$ '.
D	Mistakenly think $9 \mathrm{~cm}^{2}$ and $12 \mathrm{~cm}^{2}$ are the lengtt of the side of the square and the length of the rectangle respectively.

10. B
[The length of the side of the small square is
$16-10=6 \mathrm{~cm}$,
Area of coloured part $($ trapezium $)=(6+10) \times 16 \div 2$]
MCQ Explanation

Wrong choice	Reason
A	Mistakenly think the formula for finding the area of a trapezium is 'Base \times Height \div 2^{\prime}.
C	Mistakenly think the formula for finding the area of a trapezium is 'Base \times Height'.
D	When calculating the area of the trapezium, forget ' $\div 2$ '.

11. $36[(5+2+5) \times 6 \div 2]$
12. $24[(3+6+3) \times 4 \div 2]$
13. 20
[Length of the rectangle $=30 \div 5=6$
Lower base of the trapezium $=12-6=6$
Area of the remaining part $=(2+6) \times 5 \div 2$]
14. $165 \mathrm{~cm}^{2}$
$[(10+12) \times 15 \div 2$, Just like the shaded part below that is in the shape of a trapezium

]

Common Mistake: $135 \times$

- Ignore that 'the largest trapezium' is required in the question and miscalculated the area of the shaded part:
$(10+20) \times 9 \div 2$

10 Areas of polygons

1. $59 \mathrm{~cm}^{2}$

$$
[(6+8) \times 5 \div 2+8 \times 3]
$$

2. $58 \mathrm{~m}^{2}$

$$
[(2+3+2) \times 4 \div 2+6 \times 3+(3+10) \times 4 \div 2]
$$

3. $36 \mathrm{~m}^{2}$

$$
[5 \times 4 \div 2+(5+5-2) \times(3+2) \div 2+3 \times 2]
$$

4. $166 \mathrm{~m}^{2}$

$$
[(2+8+2+10) \times(14+3) \div 2-(8+6) \times 3 \div 2]
$$

5. x
[Do not know the length of the horizontal dotted line.]
6. x
7. 25

$$
\begin{aligned}
{[\text { Area }} & =A+B-C \\
& =6 \times 2 \div 2+(6+4) \times 4 \div 2-1 \times 1
\end{aligned}
$$

8. 48

$$
[(4 \times 3) \times(3 \times 3) \div 2-4 \times 3 \div 2]
$$

