Exercise	Topic	Strand	Learning objectives	Page
1	Mixed operations of addition, subtraction and multiplication	Number	- Perform mixed operations of addition, subtraction and multiplication - Use brackets in mixed operations of addition, subtraction and multiplication	4
2	Mixed operations of addition, subtraction and division		- Perform mixed operations of addition, subtraction and division - Solve problems involving mixed operations of addition, subtraction and division	6
3	Mixed operations of multiplication and division		- Perform mixed operations of multiplication and division - Solve problems involving mixed operations of multiplication and division	8
4	Mixed operations		- Perform mixed operations (including brackets) - Solve problems involving mixed operations (including brackets)	10
5	Perimeters	Measures	- Understand the concept of perimeter - Measure and compare the perimeters of 2-D shapes	12
6	Perimeters of squares		- Understand and apply the formula for finding the perimeters of squares Understand and apply the formula for finding the perimeters of rectangles	14
7	Perimeters of rectangles			16
8	Perimeters of other 2-D shapes		Find the perimeters of 2-D shapes which are made up of squares and rectangles	18
9	Fractions	Number	- Develop the concepts of proper fractions, improper fractions and mixed numbers - Convert between improper fractions and mixed numbers	20
10	Expanding, reducing and comparing fractions		- Develop the concepts of expanding fractions and reducing fractions - Compare fractions with the same denominator	22
11	Addition of fractions with the same denominator		- Perform addition of fractions with the same denominators - Solve problems involving addition of fractions with the same denominator	24
12	Subtraction of fractions with the same denominator		- Perform subtraction of fractions with the same denominators - Solve problems involving subtraction of fractions with the same denominator	26
13	Addition and subtraction of fractions with the same denominator		- Perform addition and subtraction of fractions with the same denominator - Solve problems involving addition and subtraction of fractions with the same denominator	28
Assessment 1			- Cover the content of exercises 1-13	30
14	Areas	Measures	- Develop the concept of area - Compare the areas of 2-D shapes by observation and overlapping - Compare the areas of 2-D shapes using self-made units	34

Exercise	Topic	Strand	Learning objectives	Page
15	Measuring areas	Measures	- Understand the standard units, square centimetre $\left(\mathrm{cm}^{2}\right)$ and square metre $\left(\mathrm{m}^{2}\right)$ - Measure and compare the areas of 2-D shapes using square centimetres and square metres	36
16	Areas of rectangles and squares		- Understand and apply the formula for finding the areas of rectangles - Understand and apply the formula for finding the areas of squares	38
17	Areas of other 2-D shapes		- Find the areas of 2-D shapes which are made up of squares and rectangles	40
18	Decimals (1)	Number	- Develop the concept of decimals - Develop the concept of place value in decimals	42
19	Decimals (2)		- Compare the decimals - Recognise the use of decimals in daily life situations	44
20	Addition and subtraction of decimals		- Perform addition and subtraction of decimals (not more than three numbers) - Solve problems involving addition and subtraction of decimals Perform mixed operations of addition and subtraction of three numbers - Solve problems involving addition, subtraction and mixed operations of addition and subtraction of decimals	46
21	Mixed operations of addition and subtraction of decimals			48
22	Bar charts (1)	Data Handling	- Understand bar charts of greater frequency counts - Interpret bar charts of greater frequency counts	50
23	Bar charts (2)		- Develop the concept of approximate values - Construct bar charts of greater frequency counts	52
Assessment 2			- Cover the content of exercises 14-23	54
Final Assessment			- Cover the content of exercises 1-23	58

Additional Resources:

- Cross-topic Exercise

```66
```

- Challenging Problems ('Inquiry and Investigation' in the latest curriculum)
- Revision Notes
- Answer Booklet (Including Solution Guide, Common Mistakes Explanation, MCQ Explanation)

11 Addition of fractions with the same denominator

1 1-minute Revision

Concept Review

Addition of fraction with the same denominator

- Add the numerators. The denominator remains the same.
e.g. $\frac{1}{5}+\frac{2}{5}=\frac{1+2}{5}$

$$
=\frac{3}{5}
$$

- Add the whole number parts and the fractions parts respectively first and then find the sum of the two parts.

$$
\text { e.g. } 2 \frac{1}{7}+3 \frac{2}{7}=(2+3)+\left(\frac{1}{7}+\frac{2}{7}\right)
$$

$$
\begin{aligned}
& =5+\frac{3}{7} \\
& =5 \frac{3}{7}
\end{aligned}
$$

2 Basic Practice

Do the calculations. Reduce the answer to its simplest form.

1. $\frac{2}{7}+\frac{6}{7}$

$=$ \qquad
$=$

3. $3 \frac{11}{18}+\frac{13}{18}$
$=$ \qquad
$=$ \qquad
$=$ \qquad
2. $\frac{5}{6}+2 \frac{1}{6}$

$=$ \qquad
4. $1 \frac{9}{20}+\frac{7}{20}+4 \frac{19}{20}$

$=$ \qquad
$=$ \qquad
$=$ \qquad
5. $6 \frac{7}{15}+\frac{14}{15}$
$=$ \qquad
6. $\frac{5}{24}+8+1 \frac{17}{24}$
$=$ \qquad
Fill in the blanks. Reduce the answer to the simplest form.
7. Boaz ate $\frac{4}{9}$ of a watermelon and Jay ate $\frac{2}{9}$ of it.

They ate \qquad of the watermelon in total.

8. Candy sold $4 \frac{5}{12}$ stacks of lottery tickets, and she sold $1 \frac{11}{12}$ stacks fewer than Dave did. They sold \qquad stacks of lottery tickets in total.
Date \square

Solve the following problems. Reduce the answer to its simplest form. (Show your working)

9. An ice cream is $\$ 7 \frac{3}{10}$ cheaper than a piece of cheesecake. How much does a piece of cheesecake cost?

10. A restaurant used $5 \frac{7}{8} \mathrm{~kg}$ of beef to make beef balls. $3 \frac{1}{8} \mathrm{~kg}$ of beef is left after making the beef balls. How many kilograms of beef were there in the restaurant originally?

3 Advanced Practice

Blacken the \bigcirc next to the correct answer.

11. Janice cut $2 \frac{3}{10} \mathrm{~m}$ of ribbon from a roll of ribbon and gave it to Annie. The ribbon that Janice cut was $\frac{9}{10} \mathrm{~m}$ shorter than the remaining ribbon. What was the original length of the roll of ribbon?
A. $5 \frac{1}{2} \mathrm{~m}$B. $4 \frac{3}{5} \mathrm{~m}$
\bigcirc
C. $4 \frac{1}{10} \mathrm{~m}$
D. $2 \frac{1}{5} \mathrm{~m}$

12. If $\frac{X}{6}+\frac{Y}{6}=1$, then $X+Y=$?

Useful Tips -

In what situation is the value of a fraction equals 1 ?A. 1B. 3C. 6D. 12
13. If each stands for 1 , what value does the sum of the coloured part shown on the right represent?
A. $\frac{5}{6}$
\bigcirc
B. $\frac{5}{8}$
\bigcirc
C. $\frac{5}{13}$D. $\frac{5}{16}$

Name: \qquad Class: \qquad ()

Date: \qquad

	Assessment points	Questions	Marks
Areas	Understanding of the concept of areas, measuring the areas of rectangles, squares and 2-D shapes	1-7	128
Decimals	Understanding of decimals, addition of decimals, subtraction of decimals, and mixed operations of addition and subtraction of decimals	8-18	138
Bar charts	Read and construct bar charts	19-20	134
		Total marks:	/ 100

Instructions - Multiple choice questions: Blacken the \bigcirc next to the correct answer.

- Questions in which you are asked to 'show your working':

Write your mathematical expressions, answers, and statements / conclusions.

- Other types of questions: Answer as required in the spaces provided.

1. In the figure on the right, the side length of each small square is 1 cm . The area of the shaded part is \qquad cm^{2}.
 right. Arrange them from the smallest to the largest.

Fill in the blanks with the correct letters.
Answer: \qquad , \qquad , \qquad (smallest) $\longrightarrow \overline{\text { (largest) }}$

3. The perimeter of a square is 56 m . The area of the square is
\qquad m^{2}.
4. The length of a rectangle is 1 m . Its width is 20 cm shorter than half of its length. The area of the rectangle is \qquad cm^{2}.

Cross-topic Exercise

Complete the questions below.

1. Kelly uses some shapes to make the figure on the right.
a. The figure is made up of \qquad quadrilaterals and
\qquad triangles.
b. Kelly uses the squares and rectangles above to make the figure on the right. If the length of the rectangle is 4 times the side length of the square, the area of the figure is \qquad cm^{2}.

c. The perimeter of the figure in question b . is \qquad . (Give the answer with a unit.)
2. The weights of the 3 pieces of fruit are shown on the right.
a. The pineapple weighs \qquad kg , that is \qquad g.
b. Change $\frac{36}{25}$ to a mixed number:
 Change $2 \frac{16}{25}$ to an improper fraction:
c. Arrange the weights of the 3 pieces of fruit from the lightest to the heaviest.

b. Change 25 to mixed from the lightest to the heaviest.

36 25 kg

\qquad $<$ \qquad $<$ \qquad (Write the numbers.)
d. The weight difference between the watermelon and the bananas is \qquad kg.
3. On the right are 2 wooden sticks.
a. Wooden stick A is \qquad m long.
Wooden stick B is \qquad m long.
(Give the answer in decimals.)

b. 2 pieces of wooden stick A and 2 pieces of wooden stick B can be used to form a (square / rectangle / rhombus). (Circle the answer)
c. What is the perimeter of the figure formed in question b.? (Show your working)

Unit 1: Mixed operations (Exercises 1-4)

1. Mixed operations of addition, subtraction and multiplication

- Methods to speed up the calculations
e.g. 1:
e.g. 2 :
$13 \times(5+100)$
$209 \times 21-9 \times 21$
$=13 \times 5+13 \times 100$
$=(209-9) \times 21$
$=65+1300$
$=200 \times 21$
$=1365$
$=4200$

2. Mixed operations of addition, subtraction and division

- Do the division first and then do
- Do the calculation in the brackets first. the addition or subtraction.
e.g.
e.g.
$23-(70-14) \div 8$
$50+27 \div 3$
$=50+9$
$=59$
$=23-56 \div 8$
$=23-7$
$=16$

3. Mixed operations of multiplication and division

- Do the calculation in order from left to right.
e.g.
$5 \times 18 \div 10$
$=90 \div 10$
$=9$
- Do the calculation in the brackets first.
e.g.

$$
\begin{aligned}
& 60 \div(3 \times 4) \div 5 \\
= & 60 \div 12 \div 5 \\
= & 5 \div 5 \\
= & 1
\end{aligned}
$$

4. Mixed operations

- Do the multiplication or division first, then do the addition or subtraction.
- If there are brackets in an expression, do the calculation in brackets first.
- In brackets, do the multiplication and division first.
e.g.
$19+7 \times(20-48 \div 6)$
$=19+7 \times(20-8)$
$=19+7 \times 12$
$=19+84$
$=103$

9. $6 \frac{9}{10}+7 \frac{3}{10}$
$=13 \frac{12}{10}$
$=14 \frac{1}{5}$
A piece of cheesecake costs $\$ 14 \frac{1}{5}$.
10. $5 \frac{7}{8}+3 \frac{1}{8}$
$=8 \frac{8}{8}$
$=9$
There were 9 kg of beef in the restaurant originally.
11. A

$$
\left[2 \frac{3}{10}+2 \frac{3}{10}+\frac{9}{10}=4 \frac{15}{10}=5 \frac{1}{2}\right]
$$

MCQ Explanation

Wrong choice	Reason
B	Wrongly take the result of adding lengths of the ribbon that Janice cut twice as the original length of the ribbon, that is $2 \frac{3}{10}+2 \frac{3}{10}$.
C	Wrongly take the result by adding the length of ribbon that Janice cut and the length difference between the ribbon that Janice cut and the remaining ribbon twice as the original length of the ribbon, that is $2 \frac{3}{10}+\frac{9}{10}+\frac{9}{10}$.
D	Wrongly take the sum of the two fractions as the answer and did not carry 1 to the whole number part.

12. C
[When the values of the numerator and the denominator are the same, the value of the fraction is 1 , that is $\frac{6}{6}=1$.]

MCQ Explanation

Wrong choice	Reason
A	Misunderstand that the sum of the numerators is 1 , the sum of the fraction is 1.
B	Wrongly take the value of X or Y as the answer.
D	Misunderstand that X and Y are both 6, $X+Y=12$.

13. B
[Divide the large rectangle into equal parts. The large rectangle on the left can be divided into 8 squares of the same size. The large rectangle on the right can be divided into 8 triangles of the same size. The calculation can be written as: $\frac{2}{8}+\frac{3}{8}=\frac{5}{8}$]

MCQ Explanation

Wrong choice	Wrongly take the number of parts of the rectangle on the left as the denominator and take the number of blue-coloured part as the numerator. Then, use $\frac{2}{6}+\frac{3}{6}$ to calculate.
A	Wrongly take the total number of parts of the two large rectangles as the denominator and take the number of blue- coloured part as the numerator. Then, use $\frac{2}{13}+\frac{3}{13}$ to calculate.
D	Wrongly take the total number of equal parts in which the two large rectangles are divided as the denominator and take the number of blue-coloured part as the numerator. Then, use $\frac{2}{16}+\frac{3}{16}$ to calculate.

12 Subtraction of fractions with the same denominator

1. $\frac{5}{6}-\frac{1}{6}$
$=\frac{4}{6}$
$=\frac{2}{3}$
2. $4-\frac{7}{15}$
$=3 \frac{15}{15}-\frac{7}{15}$
$=3 \frac{8}{15}$
3. $2 \frac{8}{9}-1 \frac{5}{9}$
$=1 \frac{3}{9}$
$=1 \frac{1}{3}$
4. $5 \frac{6}{7}-\frac{5}{7}-1 \frac{4}{7}$
$=5 \frac{1}{7}-1 \frac{4}{7}$
$=4 \frac{8}{7}-1 \frac{4}{7}$
$=3 \frac{4}{7}$
5. $1 \frac{2}{3}$
6. 2
7. $1 \frac{3}{5} \quad\left[3 \frac{4}{5}-2 \frac{1}{5}=1 \frac{3}{5}\right]$
8. $\frac{1}{3}\left[\frac{11}{12}-\frac{7}{12}=\frac{4}{12}=\frac{1}{3}\right]$
9. $1 \frac{3}{10}-\frac{9}{10}$

$$
\begin{aligned}
& =\frac{4}{10} \\
& =\frac{2}{5}
\end{aligned}
$$

The difference in length between the white rope and the red rope is $\frac{2}{5} \mathrm{~m}$.
10. $1-\frac{7}{16}-\frac{5}{16}$
$=\frac{4}{16}$
$=\frac{1}{4}$
$\frac{1}{4}$ of the fruit are mangoes.
Common mistake: $\frac{7}{16}-\frac{5}{16}=\frac{1}{8} \times$

- Misunderstand that the subtraction of the two numbers can get the answer. 1 should be used as all the fruit in the basket. Then subtract the fractions of oranges and peaches.

11. $\frac{5}{8}$
[Use 1 as all the arrows. Subtract the fraction of the arrows that hit the red target. The remainder is the fraction of the arrows that miss the red target.
$1-\frac{3}{8}=\frac{5}{8}$]
12. $\frac{3}{7}$
[Use 1 as all the biscuits. $\frac{5}{14}$ is the fraction that Oscar ate. $1-\frac{3}{14}-\frac{5}{14}=\frac{6}{14}=\frac{3}{7}$]

Common mistake: $\frac{11}{14} \times$

- Did not calculate the fraction that Oscar ate.

13. a. $26 \frac{1}{2}$

$$
\left[16 \frac{5}{8}+9 \frac{7}{8}=25 \frac{12}{8}=26 \frac{1}{2}\right]
$$

b. $3 \frac{1}{2}$

$$
\left[26 \frac{1}{2}-23=3 \frac{1}{2}\right]
$$

13 Addition and subtraction of fractions with the same denominator

1. $\frac{6}{7}+\frac{3}{7}-\frac{1}{7}$

$$
\begin{aligned}
& =\frac{8}{7} \\
& =1 \frac{1}{7}
\end{aligned}
$$

2. $\frac{5}{9}-\frac{4}{9}+\frac{2}{9}$

$$
\begin{aligned}
& =\frac{3}{9} \\
& =\frac{1}{3}
\end{aligned}
$$

3. $1 \frac{2}{15}+2 \frac{8}{15}-\frac{7}{15}$

$$
\begin{aligned}
& =3 \frac{3}{15} \\
& =3 \frac{1}{5}
\end{aligned}
$$

4. $5 \frac{13}{20}-4 \frac{7}{20}+3 \frac{9}{20}$

$$
\begin{aligned}
& =4 \frac{15}{20} \\
& =4 \frac{3}{4}
\end{aligned}
$$

5. $6 \frac{2}{3}$
6. $\frac{1}{3}$
7. $6 \frac{3}{10}$

$$
\left[3 \frac{9}{10}-2 \frac{3}{10}+4 \frac{7}{10}=5 \frac{13}{10}=6 \frac{3}{10}\right]
$$

8. $\frac{11}{12}$

$$
\left[1 \frac{5}{12}+\frac{1}{12}-\frac{7}{12}=\frac{11}{12}\right]
$$

